
GPU Application to Real-Time

Astronomical Image Processing

Pipelines

Applying massively parallel graphics

processing to rapid image processing for

computationally intensive algorithms

1
Presented 26 Jan 2011

Steven Hartung

Variable Object Study
(Temporal Astronomy)

• Changes in magnitude or position on human timescales

– seconds to centuries

– principal tool is differential photometry

• Dynamic celestial phenomena

– Variable stars, eclipsing binaries

– Supernovae

– Active Galactic Nuclei (AGN)

– Moving solar system bodies (comets, asteroids, moons, minor planets)

– Exo-planet transits

– Proper motion

– Outburst events (GRB, star forming regions, …)

2

Image Subtraction
Discovery and analysis that goes beyond blinking and aperture photometry
– Pixel-by-pixel subtraction

– Differential photometry on an entire image

– Finds localized changes in magnitude

– Identifies and characterizes moving and fixed position variables targets

Subtraction on right shows progress of a light echo from an earlier nova in the star field on the left

Miller, Pennypacker, & White, 2008, PASP Source images: Astronomical Research Institute

3

- =

Convolved Image Subtraction
Find a transfer function that redistributes the flux point spread function (PSF)

to match, with no change in net flux for a target object. Kernel K convolved

with image R matches image I when no variable objects are present:

The difference image D then characterizes all variable objects:

Challenge: produce the best possible kernel.

R K I 

 R K I D  

4

Optimal Image Subtraction (OIS)

• Assume a basis function
– Alard (ApJ 1998, A&A 1999,2000) uses a Gaussian basis in the original implementations

– Miller (PASP 2008) introduced optional Dirac delta function basis (better asymmetric fit)

• Kernel formed by a superposition of scaled basis

functions

• Solve the kernel by a least-squares fit until PSF

in across a large number of sampled

non-variable image locations

R K I 

 ,n ii
i

K a x y B   

5

In Pan-STARRS and LSST nearly all of the images will be differenced at least once.

The Rising Data Torrent
170 GB 30 TB

PS1 1-1.5 TB

PS4 4-6 TB

Image data per night of operation

6

Image source: Institute for Astronomy, University of Hawai`i, Photograph by Rob Ratkowski for the PS1SC

Image source: SDSS

and the Astrophysical

Research Consortium
Image source: LSST Corporation,

Image credit: J. Andrew, NOAO/LSST

OIS – computation requirements

– As exemplified by Pan-STARRS, 1.4 Gpx mosaic camera

• Using Miller-Buie OIS IDL code

– Miller’s IDL OIS optimized by Buie (and his Harvey Mudd team)

• 2nd order space-varying kernel fit for a single tile 4800x4800 pixels

– ~3 TFLOP/subtraction for a tile image pair

– ~100 sec on a modern high-performance PC under IDL

» Operating at ~30 GFLOPS

• 60 tiles in a Pan-STARRS image [PS1 takes ~1 image/2 min]

– ~180 TFLOP/subtraction for a complete image pair

– ~6000 sec (1.67 hrs) on the same high performance PC as above

7

Computation Time by Operation
(Miller-Buie IDL OIS, Constant Gaussian Kernel)

8

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.0 1.6 4.0 6.6 9.0 26.2 104.9 419.4 1677.7

E
x

e
c

u
ti

o
n

 T
im

e
 a

s
 %

 o
f

T
o

ta
l

Image Size in Pixels (x10,000)

Sky subtraction

Stamp selection

Final Convol/Sub

Kernel Fitting

Convolution Load
Convolution is the major processing load in OIS. Hundreds to hundreds of

thousands of small convolutions for determining the kernel based on small

sample regions (P in number). The kernel is developed as a superposition of

basis functions determined by a least-squares fit:

Where a perfect kernel is found when

Plus the time for the convolution in the final full difference image D:

     
2

, ,
1 1 1 1

,
k kP N

n k n ki j i j
k i j n

F a x y R K I
 

   

 
   

 
 

 R K I D  

9

0F 

Amdahl’s Law Scaled By Problem Size
Amdahl’s speedup function is most meaningful for a fixed

problem size. If we apply it to execution time:

Where t is the time of execution. Time is the real challenge we must address, not S.

But the problem size is growing.

Where f(x,P,N) is the effective problem increase as a function of image size in pixels x;

g(x) and h(x) are the serial and parallel affected execution scaling functions

respectively which increase proportional to x.

• When possible, reformulating the code so that g(x) is constant is the ideal case

   0 0, 1 Pt t S P N t P
N

    
 

      
01 01, , 1x

h x P
t t f x P N t g x P

N
 

    
 

10

0

200

400

600

800

1000

1200

0.00E+00 2.00E+06 4.00E+06 6.00E+06 8.00E+06 1.00E+07 1.20E+07 1.40E+07 1.60E+07 1.80E+07

E
x
e
c
u

ti
o

n
 T

im
e
 (

se
c
)

Image Size in Pixels

Remaining Serial Code

Convolutions and Fitting

11

h(x)

g(x)

Computation Time by Class
(Constant Gaussian Kernel)

GPULib for IDL
• Commercial Product

– High-level-language (HLL) implementation GPU API

– Free for academic use

– HLL frontend for CUDA, requires CUDA and NVIDIA hardware

• IDL code must be modified for GPULib calls
– GPU variables (explicitly or implicitly declared) are required for GPU operations

– GPULib library is a small subset of IDL, complex IDL cannot be replaced one-for-one

– Limited dimensionality in many functions, call parameters different in some cases

– Code must be applicable to a SIMD paradigm (same serial to GPU parallel challenge as everywhere else)

– Operator overloading for IDL v8.0 (a nice feature)

• Every function call is a new CUDA kernel
– Memory transfer and kernel initiation overhead apply

– Problem must be stated in a way that minimizes function calls or overhead swamps out gains

• Implicit (hidden) GPU memory allocations must be managed in some cases
– GPU memory resources can be consumed rapidly by some calling methods

– A CPU variable can be morphed into a GPU variable if needed by a GPULib function (allocating GPU global memory)

– Implicit variables may need to be freed manually to recover memory, especially when working with large arrays

12

GPULib vs CPU Convolution Time
(Constant Gaussian Kernel)

13

0.0001

0.001

0.01

0.1

1

10

256 1024 4096 16K 64K 256K 1M 4M 16M

C
o

n
v

o
lu

ti
o

n
 T

im
e

in
 S

ec
 (

lo
g

 s
ca

le
)

Image Pixels

CPU

GPU

Conclusions
• OIS is well suited for improvement by a GPU solution

• Growth in time of execution is dominated by code that can be

parallelized effectively

• GPULib can achieve a 10x-20x gain for OIS on larger images
– But probably not much more without heroics

– Further gains are best approached in a native GPU development environment

• In general, characterizing Amdahl's Law in terms of time that

scales by problem size for the problem at hand can provide

insight into practical optimizations, and limits of optimization

with respect to problem size increases

14

Questions?

Thank you,

15

